Investigation of the thermal model for description of

 hadron multiplicities in heavy ion collisionsD. Oliinychenko in collaboration with K.A. Bugaev and A.S. Sorin

Dubna, JINR

> NICA - FAIR workshop

April 4, 2012

Table of contents

(1) Thermal model: brief review
(2) Freezeout criteria discussion
(3) Conservation laws investigation

4 Radii fit and Lorentz contraction

Section 1

Thermal model: brief review

Minimal thermal model: brief review

- Purpose: description of multiplicities/ratios of hadrons produced in heavy-ion collisions
- Core assumption: thermal equillibrium
- Grand canonical treatement
- 2 parameters: temperature T and baryo-chemical potential μ_{b}

Example of our particle ratios description. Points stand for
experimental values, lines are theoretical description. $\sqrt{S_{N N}}$
$=130 \mathrm{GeV}, \mathrm{T}=169 \mathrm{MeV}, \mu_{b}=31 \mathrm{MeV}, \chi^{2} / N D F=3.4 / 9$

Minimal thermal model: brief review

- Purpose: description of multiplicities/ratios of hadrons produced in heavy-ion collisions
- Core assumption: thermal equillibrium
- Grand canonical treatement
- 2 parameters: temperature T and baryo-chemical potential μ_{b}

Consider hadron gas consisting of h sorts of hadrons at temperature T in volume V . Each sort is characterized by mass m_{i} and chemical potential μ_{i}. The number of particles of i -th sort is N_{i}. Statistics is supposed Boltzmann. Canonical partition function is written as follows:

$$
\begin{gather*}
Z_{c a n}\left(T, V, N_{1}, \ldots, N_{s}\right)= \\
=\prod_{i=1}^{s}\left(\frac{g_{i} V}{(2 \pi)^{3}} \int \exp \left(-\frac{\sqrt{k^{2}+m_{i}^{2}}}{T}\right) d^{3} k\right)^{N_{i}} \tag{1.1}
\end{gather*}
$$

Here $g_{i}=2 S+1$ is degeneracy factor of i-th hadron sort, k is particle momentum. Grand canonical partition function reads:

$$
\begin{gather*}
Z_{\text {gr.can. }}=\sum_{N_{1}=0}^{\infty} \cdots \sum_{N_{h}=0}^{\infty} \exp \left(\frac{\mu_{1} N_{1}+\cdots+\mu_{s} N_{s}}{T}\right) \times \\
\times Z_{c a n}\left(T, N_{1}, \ldots, N_{s}\right) \tag{1.2}
\end{gather*}
$$

From (1.2) one gets equillibrium particle quantities of each sort:

$$
\begin{equation*}
N_{i}=\frac{g_{i} V}{(2 \pi)^{3}} \int \exp \left(\frac{-\sqrt{k^{2}+m_{i}^{2}}+\mu_{i}}{T}\right) d^{3} k \tag{1.3}
\end{equation*}
$$

Minimal thermal model: brief review

- Conservation laws
- Resonance decays

Conservation of baryon charge B, strangeness S and isospin projection I_{3} in average:

$$
\begin{gather*}
\mu_{i}=B_{i} \cdot \mu_{b}+S_{i} \cdot \mu_{s}+I_{3 i} \cdot \mu_{3} \\
\sum_{i=1}^{N} n_{i} S_{i}=S_{\text {init }}=0 \tag{1.4}\\
\sum_{i=1}^{N} n_{i} B_{i}=B_{\text {init }} / V=200 / V \\
\sum_{i=1}^{N} n_{i} I_{3 i}=I_{\text {3init }} / V=-20 / V
\end{gather*}
$$

Here μ_{i} is the chemical potential of i-th particle sort, n_{i} is concentration of i-th particle sort, V is total volume.

Minimal thermal model: brief review

- Conservation laws
- Resonance decays
- Hadron width corrections

Resonance decays are accounted for in the following way: final multiplicity consists of the thermal and the decay ones:

$$
\begin{equation*}
N_{X}^{f i n}=N_{X}^{t h}+N_{X}^{\text {decay }}=N_{X}^{t h}+\sum_{Y} N_{Y}^{t h} \cdot B R(Y \rightarrow X) \tag{1.5}
\end{equation*}
$$

where $B R(Y \rightarrow X)$ is decay branching of Y-th particle into X .

Minimal thermal model: brief review

- Conservation laws
- Resonance decays
- Hadron width corrections
- Excluded volume corrections

Widths of resonances can be taken into account via averaging all expressions, which contain mass, over Breit-Wigner distribution:

$$
\begin{array}{r}
\int \exp \left(\frac{-\sqrt{k^{2}+m_{i}^{2}}}{T}\right) d^{3} k \rightarrow \\
\rightarrow \frac{\int_{M_{0}}^{\infty} \frac{d x_{i}}{\left(x-m_{i}\right)^{2}+\Gamma^{2} / 4} \int \exp \left(\frac{-\sqrt{k^{2}+x^{2}}}{T}\right) d^{3} k}{\int_{M_{0}}^{\infty} \frac{d x_{i}}{\left(x-m_{i}\right)^{2}+\Gamma^{2} / 4}} \tag{1.6}
\end{array}
$$

where M_{0} is dominant decay channel mass, m is resonanse mass, Γ is resonanse width.

Minimal thermal model: brief review

- Conservation laws
- Resonance decays
- Hadron width corrections
- Excluded volume corrections

The interaction of hadrons and resonances is usually included by providing a hard core repulsion of Van der Waals-type via an excluded volume correction.

$$
\begin{equation*}
p=p_{\text {id.gas }} \cdot \exp \left(-\frac{p v_{0}}{T}\right), \quad n_{i}=\frac{n_{i}^{i d} \exp \left(-\frac{p v_{0}}{T}\right)}{1+\frac{p v_{0}}{T}} \tag{1.7}
\end{equation*}
$$

where $v_{0}=\frac{2 \pi}{3}(2 R)^{3}$ is calculated for a radius considered identical for all hadrons.

Chemical freezeout

Comparison of Chemical Freeze-Out Criteria in Heavy-Ion Collisions; J. Cleymans,
H. Oeschler, K. Redlich, S. Wheaton; arXiv:hep-ph/0511094v2 18 Nov 2005;

Section 2

Freezeout criteria discussion

Established freezeout criteria

arXiv:hep-ph/0511094v2 18 Nov 2005
Comparison of Chemical Freeze-Out Criteria in Heavy-Ion Collisions J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton

$$
\begin{gathered}
n_{b}+n_{\bar{b}}=0.12 f m^{-3} \\
s / T^{3}=7 \\
<E>/<N>=1 \mathrm{GeV}
\end{gathered}
$$

Criteria comparison

[1] arXiv:1201.0693v1 [nucl-th] 3 Jan 2012; Interacting hadron resonance gas meets lattice QCD A. Andronic, P. Braun-Munzinger, J. Stachel, M. Winn
[2] arXiv:0511071v3 [nucl-th] 27 Mar 2006; Hadron production in central nucleus-nucleus collisions at chemical freeze-out; A. Andronic, P. Braun-Munzinger, J. Stachel

Criteria comparison

[1] arXiv:1201.0693v1 [nucl-th] 3 Jan 2012; Interacting hadron resonance gas meets lattice QCD A. Andronic, P. Braun-Munzinger, J. Stachel, M. Winn
[2] arXiv:0511071v3 [nucl-th] 27 Mar 2006; Hadron production in central nucleus-nucleus collisions at chemical freeze-out; A. Andronic, P. Braun-Munzinger, J. Stachel

Criteria comparison

[1] arXiv:1201.0693v1 [nucl-th] 3 Jan 2012; Interacting hadron resonance gas meets lattice QCD A. Andronic, P. Braun-Munzinger, J. Stachel, M. Winn
[2] arXiv:0511071v3 [nucl-th] 27 Mar 2006; Hadron production in central nucleus-nucleus collisions at chemical freeze-out; A. Andronic, P. Braun-Munzinger, J. Stachel

New freezeout criterium

INVESTIGATION OF HADRON MULTIPLICITIES AND HADRON YIELD RATIOS IN HEAVY ION COLLISIONS; D.R. OLIINYCHENKO, K.A. BUGAEV, A.S. SORIN; arXiv:1204.0103v1 [hep-ph] 31 Mar 2012;

Discussion of this freeze-out criterium will be given by K.A. Bugaev in his talk.

Section 3

Conservation laws investigation

Conservation laws: multiplicities fit

- Multiplicities fit: 3 free parameters - T, μ_{b} and V

$$
\begin{gathered}
n_{i}=n_{i}\left(T, \mu_{b}, \mu_{s}, \mu_{l_{3}}\right) \\
\sum_{i=1}^{N} n_{i} S_{i}=S_{\text {init }} / V=0 \\
\sum_{i=1}^{N} n_{i} B_{i}=B_{\text {init }} / V=200 / V \\
\sum_{i=1}^{N} n_{i} I_{3 i}=I_{3 \text { init }} / V=-20 / V
\end{gathered}
$$

- System of eq-s: 3 equations, 5 unknowns, 3 of them are fitted \rightarrow one eq-n might be not satisfied
- Barionic sum $S_{b}=V \cdot \sum_{i=1}^{N} n_{i} B_{i}$. If the equation standing for baryon conservation is satisfied, then

Figure: Baryonic sum $S_{b}=V \cdot \sum_{i=1}^{N} n_{i} B_{i}$ vs. $\sqrt{S_{N N}}$. Blue points are values calculated from baryon conservation, red line is an expected value. $S_{b}=$ const $=200$.

Conservation laws: ratios fit

- Ratios fit: 2 parameters - T, μ_{b}.
- Volume V is extracted from conservation laws
- Multiplicities: $N=n \cdot V$

Figure: Left panel: Volume at chemical freezeout, extracted from conservation laws. Two cases of hard-core radii - 0.0 fm and 0.3 fm ; Right panel: π^{+}multiplicity obtained via multiplying concentration over volume and an experimental multiplicity;

Section 4

Radii fit and Lorentz contraction

Radii global fit

- Model with different meson and baryon radii, R_{m} and R_{b} was considered
- Global fit of experimental data was performed
- Restrictions over R_{m} and R_{b} were obtained
- Lorentz contraction was also considered

Radii global fit

Figure: Left panel: $\chi^{2} / N D F$, no Lorentz contraction; Right panel: $\chi^{2} / N D F$ with Lorentz contraction;

Lorentz contraction

- Needs no new parameters
- Frees model from causality paradox
- Improves ratios description quality
- Might improve strangeness horn description

Figure: Difference of $\chi^{2} / N D F$ between $\frac{R \mathrm{~m}}{\mathrm{t}} \mathrm{f} \underset{\mathrm{fm}}{\mathrm{m}}$ odel without contraction and the model with Lorentz contraction.

Lorentz contraction

Figure: Left panel: $\frac{K^{+}}{\pi^{+}}$; Right panel: $\frac{p}{\pi^{-}}$ratio;

Section 5

Summary

Summary

- Conservation laws should be altered
- For ratios description baryon conservation law can be neglected
- For multiplicities description 3 fit parameters lead to ambiguity
- Experimental restrictions over baryon and meson radii are obtained

Summary

- Conservation laws should be altered
- For ratios description baryon conservation law can be neglected
- For multiplicities description 3 fit parameters lead to ambiguity
- Experimental restrictions over baryon and meson radii are obtained
- Lorentz contraction does not improve strangeness horn description much

Summary

- Conservation laws should be altered
- For ratios description baryon conservation law can be neglected
- For multiplicities description 3 fit parameters lead to ambiguity
- Experimental restrictions over baryon and meson radii are obtained
- Lorentz contraction does not improve strangeness horn description much
- New freeze-out criterium $s / \rho_{\text {tot }} \approx 7$ was suggested, it is a new physical effect and we call it adiabatic hadron production at freeze-out.

Summary

- Conservation laws should be altered
- For ratios description baryon conservation law can be neglected
- For multiplicities description 3 fit parameters lead to ambiguity
- Experimental restrictions over baryon and meson radii are obtained
- Lorentz contraction does not improve strangeness horn description much
- New freeze-out criterium $s / \rho_{\text {tot }} \approx 7$ was suggested, it is a new physical effect and we call it adiabatic hadron production at freeze-out.

Thank you!

Thank you for your attention!

Questions are welcome.

Our modification of the thermal model:

Concerns only excluded volume corrections

- Arbitrary number of hadron sorts - s. Arbitrary symmetric excluded volume sxs matrix b , where $b_{i j}$ is excluded volume for sorts i and j.
- Canonical partition function:

and $g=2 J+1$ is a degeneracy factor, N_{i} - multiplicity of each sort.

Our modification of the thermal model:

Concerns only excluded volume corrections

- Arbitrary number of hadron sorts - s. Arbitrary symmetric excluded volume sxs matrix b , where $b_{i j}$ is excluded volume for sorts i and j.
- Canonical partition function:
$Z\left(T, V, N_{i}\right) \approx \prod_{i=1}^{s} \frac{\phi_{i}^{N_{i}}}{N_{i}!} \times\left[\prod_{i_{1}=0}^{N_{1}-1}\left(V-b_{11} i_{1}\right)\right] \times\left[\prod_{i_{2}=0}^{N_{2}-1}\left(V-b_{12} N_{1}-b_{22} i_{2}\right)\right] \times \cdots \times\left[\prod_{i_{s}=0}^{N_{s}-1}\left(V-\sum_{j=1}^{s} b_{s j} N_{j}-b_{s s} i_{s}\right)\right]$
where ϕ_{i} stands for a momentum integral: $\phi_{i}(T, m, g)=\frac{g}{2 \pi^{2}} \int_{0}^{\infty} k^{2} \exp \left[-\frac{E(k)}{T}\right] d k$, in which $E(k)=\sqrt{k^{2}+m^{2}}$ and $g=2 J+1$ is a degeneracy factor, N_{i} - multiplicity of each sort.
- We modify CPF (2.1) so that first order over $V_{\text {eigen }} / V$ remains the same:

$$
\begin{equation*}
Z_{V d W}\left(T, V, N_{i}\right)=\left[\prod_{i=1}^{s} \frac{\phi_{i}^{N_{i}}}{N_{i}!}\right] \times\left[V-\frac{N \cdot b \cdot N^{T}}{M}\right]^{M} \tag{2.2}
\end{equation*}
$$

where $N=\left(N_{1}, N_{2}, \ldots, N_{s}\right)$ and $M=\sum_{i=1}^{s} N_{i}$ is total number of particles.

Our modification of the thermal model:

Concerns only excluded volume corrections

- Arbitrary number of hadron sorts - s. Arbitrary symmetric excluded volume sxs matrix b , where $b_{i j}$ is excluded volume for sorts i and j.
- Canonical partition function:
$Z\left(T, V, N_{i}\right) \approx \prod_{i=1}^{s} \frac{\phi_{i}^{N_{i}}}{N_{i}!} \times\left[\prod_{i_{1}=0}^{N_{1}-1}\left(V-b_{11} i_{1}\right)\right] \times\left[\prod_{i_{2}=0}^{N_{2}-1}\left(V-b_{12} N_{1}-b_{22} i_{2}\right)\right] \times \cdots \times\left[\prod_{i_{s}=0}^{N_{s}-1}\left(V-\sum_{j=1}^{s} b_{s j} N_{j}-b_{s s} i_{s}\right)\right]$
where ϕ_{i} stands for a momentum integral: $\phi_{i}(T, m, g)=\frac{g}{2 \pi^{2}} \int_{0}^{\infty} k^{2} \exp \left[-\frac{E(k)}{T}\right] d k$, in which $E(k)=\sqrt{k^{2}+m^{2}}$ and $g=2 J+1$ is a degeneracy factor, N_{i} - multiplicity of each sort.
- We modify CPF (2.1) so that first order over $V_{\text {eigen }} / V$ remains the same:

$$
\begin{equation*}
Z_{V d W}\left(T, V, N_{i}\right)=\left[\prod_{i=1}^{s} \frac{\phi_{i}^{N_{i}}}{N_{i}!}\right] \times\left[V-\frac{N \cdot b \cdot N^{T}}{M}\right]^{M} \tag{2.2}
\end{equation*}
$$

where $N=\left(N_{1}, N_{2}, \ldots, N_{s}\right)$ and $M=\sum_{i=1}^{s} N_{i}$ is total number of particles.

Our modification of the thermal model:

Concerns only excluded volume corrections

- Final equation system:

$$
\begin{equation*}
\xi_{i}=A_{i} \exp \left(-\sum_{j=1}^{s} 2 \xi_{j} b_{i j}+\frac{\xi b \xi^{T}}{\sum_{j=1}^{s} \xi_{j}}\right), i=1 . . s \tag{2.3}
\end{equation*}
$$

Pressure is written as

$$
\begin{equation*}
p=\sum_{i=1}^{s} \xi_{i} \tag{2.4}
\end{equation*}
$$

Here $A_{i}=\frac{g}{2 \pi^{2}} \int_{0}^{\infty} k^{2} \exp \left[-\frac{E(k)+\mu_{i}}{T}\right] d k$ and

$$
\begin{align*}
& \xi_{i}=\frac{N_{i}}{V-\frac{N^{T} B N}{M}} \tag{2.5}\\
& \xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right) \tag{2.6}
\end{align*}
$$

From equations (2.3) one gets concentrations $n_{i}=\frac{N_{i}}{V}$:

$$
\begin{equation*}
n_{i}=\frac{\xi_{i}}{1+\frac{\xi^{T} B \xi}{\sum_{j=1}^{S} \xi_{j}}} \tag{2.7}
\end{equation*}
$$

- Transforms into conventional case for equal $b_{i j}=v_{0}$.

